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Accuracy of the lattice Boltzmann method based on analytical solutions

Gabor Hazi*
LITEC, Consejo Superior de Investigacion Cientificas, Maria de Luna 8, Zaragoza 50015, Spain
(Received 31 December 2002; published 15 May 2003

In this paper, a simple method is proposed to obtain steady analytical solutions for the lattice Boltzmann
method. Based on such analytical results, it is demonstrated how the accuracy of the lattice Boltzmann method
can depend on the relative orientation of the lattice and the flow field. It is also demonstrated that the method
can be useful to obtain a general class of analytical solutions for the lattice Boltzmann method. Finally, a
simple relation is given between the compressibility error and the velocity field.
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[. INTRODUCTION tunately, there are only a few known analytical solutions for
the Navier-Stokes equations where the geometrical domain is
Over the last few years, the lattice Boltzmann methodbounded by curved walls. Since for the horizontal Poiseuille
(LBM) became a viable and useful method in the field offlow we have an exact solution, it seems natural to look for
Computationa| fluid dynamics_ Due to some of its nice prop.an analytical solution for its rotated version; that is, rotating
erties such as easy implementation and parallelization, it ha§e geometrical domain on the lattice or, equivalently, rotat-
been applied successfully in a wide range of hydrodynamiéng the lattice on the geometrical domain, one can look for
pr0b|em3(for a review, see Ref$1,2])_ However, the accu- analytical solutions for the inclined Poiseuille fld\see Fig.
racy of the LBM is still subject to debate. Using multiscale 1, righy. Since for the rotated channel one of the properties
expansion, it has been shown that at low Mach numbers, thésed in Ref[6] will be destroyed, namely, the indepen-
LBM solves the Navier-Stokes equations with second-ordeflence, one could not follow the steps given in Réf.
accuracy both in space and tinig]. Nevertheless, several ~ The aims of this paper are threefold. First, using a simple
numerical experiments have shown only first-order accuracidea it will be shown, how one can test whether an analytical
(see Ref[4], and references ther@inNow, it is generally —Steady-state solution of the Navier-Stokes equations can be
accepted that the boundary conditions adopted from the lagbtained exactlyup to machine accuragyn the framework
tice gas automaton methd@.g., bounce-back method for of the LBM.
nonslip velocity can reduce the accuracy of the LBM. Fur- ~ Second, using this idea the analytical solution of the ro-
thermore, this conclusion has been supported by analyticifted Poiseuille problem will be tested and will show how
calculations. Indeed, when Noblet al. developed a new the accuracy of the LBM depends on the orientation of the
nons”p boundary condition for the LBM, they found that lattice to the flow field for this specific case. We also analyze
when using this boundary condition at the walls of a hori-the accuracy of the analytical solution of a more complex
zontal channel, the steady-state solution gave the Poiseuille
profile up to the machine accurafy]. This observation sug-
gested that a set of distribution functions has to exist, which
is the exact representation of the Poiseulle flovdependent
of the lattice spacing Zhouet al. determined these distribu-
tion functions analytically, using the special properties of the
horizontal Poiseuille flow6]. They assumed, for instance,
that the solution is symmetric, and independent of time and
x. Based on this analytical solution, they also demonstrated [
that the bounce-back boundary condition can reduce the ac- 8
curacy of the LBM to first order. However, the investigation
focused only on the case where the lattice orientation was Lattice numbering Rotated lattice
parallel to the walls of the channésee Fig. 1, top lejt
Consequently, the analytical solutions obtained in this way 6 2 5
could not answer the question how the bounce-back bound-
ary condition performs in general, e.g., for inclined walls. To
obtain a priori information about boundary conditions for
such situations, one has to carry out the derivation of ana-
lytical solutions(if they exist at al) for curved walls. Unfor-

Horizontal flow Inclined flow

*Permanent address: KFKI Atomic Energy Research Institute, FIG. 1. Flow directions in horizontal and inclined channels
Simulator Development Department, H-1525 Budapest, Hungary{— =/4). This inclined channel corresponds to the horizontal flow
electronic address: gah@sunserv.kfki.hu in a rotated lattice.
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problem, namely, the Jeffery-Hamel flow, which has a closeéNavier-Stokes equations in the low-Mach number lifsite
relationship with the Poiseuille problem. the derivation, e.g., in Ref3]).

Finally, we will give some preliminary results of an analy-
sis, which focuses on the general class of analytical solutions lIl. THE ROTATED POISEUILLE FLOW
of the LBM. It will be shown that for a specific class of
problems[when u,=u,(y) andu,=0], a simple condition Using the same model, Zat al.[6] determined the form
can be obtained. It will be pomted out that for satisfying this©Of the distribution functions that exactly satisfy the Poiseuille
condition the first-order solution in gives the Couette flow, flow in a horizontal channel with unit width:
the second-order provides the Poiseulle flow, and we give a ap 0
different analytical third-order solution, too. We point out _ ) _ & _ v _
that this class of flows is always free of compressibility error. U= Uo(1=y7), Uy=0, Z==2pwto, ay =0.
For a more general clasfwhen u,=u,(x,y) and u, (4)
=uy(x,y)], a relation between the compressibility error and
the velocity field is given.

d

Their derivation was based on the special properties of this
flow field (e.g., independency ¢fandx) and their results are
valid in the overall parameter domain ef &, u.

However, there is a more straightforward way to test ana-

In this paper, one of the most popular two-dimensionallytical solutions in the LBM framework by choosing=1.
LBM models is used: D2Q9, which uses nine-velocities, butAlthough this selection strictly limits the validation of any
the idea to test analytical solutions can be immediately apanalytical solution, we can use this idea for more general
plicable to any other latticgeven for three-dimension&BD) problems where the flow field does not have such nice prop-

Il. THE LATTICE BOLTZMANN METHOD

latticed. erties as those of the Poiseuille flow.
The lattice Boltzmann equation using the Bhatnagar- Indeed, choosingr=1, the distribution functions at a
Gross-Krook[ 7,8] collision operator is given by given lattice siter and timet+ & will be determined by the

equilibrium distributions of the neighboring sites based on
1 . .
£+ 08t 8)~ (1= - _[f,(r)—1r,n), (1 1 anavieal solutons
fi(r+8eg ,t+8)=1%r,t). (5)
where f;(r,t) is the particle distribution functiorg is the
lattice velocity vector;r is the relaxation time that controls If the solution is steady, we should obtain the analytical so-
the rate of approach to the equilibrium distribution functionlution atr by simply taking the corresponding moments of
f79r,t), and§ is the lattice spacing. the distribution functions using Ed3). In other words, if
For a D2Q9 model, the lattice vectoisee Fig. 1, bottom one sums up the equilibrium distribution functions of the
left) take the forme =[cogw(i —1)/2),sin(w(i—1)/2)] for ~ neighboring lattice sites af (which correspond to an ana-
i=1,2,3,4 anda=\/§[cos(7r(i —9/2)/12),sin(m(i —9/2)/2)] lytical solution and adds the rest distribution ofto this
for i=5,6,7,8, and the equilibrium distributions can be givensum, the result should be the analytical density.&for the
by horizontal Poiseuille flow, it is easy to check that the above

leads to the same distribution functions that were obtained in
eq_ Ref. [6]. (a substitution ofr=1 is understood for a direct
fo'=wop| 1- Su-uj, comparisoi Actually, the idea can be applied to test any
2 steady state solution of the Navier-Stokes equation in the
LBM framework, but an existing analytical solution would
be validated in this way only for=1 or, from another point
of view, for a fixed viscosity.

Using the idea above, one can derive analytical solution
for the Poiseuille flow in an inclined channel. For simplicity,
we first consider the problem where the angle of the channel

— /4 (see Fig. 1, top right A transformation of the ana-
Iyt|cal solution of the horizontal Poiseuille flow gives

9 3
1+3(e-u)+5 (e u)’— ~u-u

fo9=w;p 5

where the lattice weights ane,=3, w,=3 for i=1,2,3,4
andw,= % for i=5,6,7,8.

The equilibrium distributions are derived by the low-
Mach number approximation of the Maxwell-Boltzmann dis- '
tribution. A systematic and mathematically rigorous deriva-

tion of the coefficients can be found in RE8)]. 2
The macroscopic quantities; hydrodynamic velocity and (X,y)=Uy(X,y)= 2u (1——2(y X) ) (6)
density are calculated by taking the following moments of tx Y 0

the distribution functions:
Looking for the solution at=(x,y) and substituting the

analytical solutions into the equilibrium distributions at the

PZZ fi, PUZZ fie. 3 neighboring sites, one obtains the following functions:
By using the Chapman-Enskog multiscale expansion, it eq 4 o
can be shown that the density and the velocities satisfy the fo'(xy)= ! [UX(X y)+uy(x I
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X, y)= GL1+3U,(xy) +3u2(x )],
1S90y )= g[1+3u,(xy ) +3u2xy )], (@)
FE0x"y) = 1L=3u,(¢"y) +3UZ(x )],
590x,y™) = 5130y (x,y ") +3uZ(x,y )],

Xy )= 25! 1 3U(X Ty )+ Uy(x Y )]
9 -y - y12
+§[UX(X Y )+Uy(X Y )]
3 o 2/ 0= \,—
— LUy ) Fuy(xy )
X,y ") = el 1+3[— U,y )+ Uy ()]
9 - g+ - yty12
+§[—UX(X Y )+Uy(X Y )]
3 2/ y— yt 20— yt
LUy D Huy(x Ly ]
X7,y ) = el 1+3[— Uy )+ Uy (T y )]
9 + + yt+)12
+§[—UX(X Y )—Uy(X Y )]
3 2/y+ 2yt yt
— S LUy ) Fuy(x Ly
59Xy )= 251 13Xy )=y (x"y 7))
9 - —\72
3100y ) = uy(xy )]
3 20yt 20t
_E[ux(x Y )+Uy(X Y )] ) (8)

where for conciseness, the superscripand — have been
introduced for displacements, e.g.,

f29xT,y ) =f5%x+ 8,y +5). (9)

These functions will form the distributions atand time
t+ 8. The macroscopic quantities mtcan be obtained from
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tations of the inclined Poiseuille flow at Summing up the
distribution functions above, one obtains the following den-
sity:

p(1—EudsY), (10

whereE=1/4.

This result clearly demonstrates that the distribution func-
tions obtained do not satisfy the analytical solution since the
density now depends on the lattice spa@cerhe error in the
density is of the fourth order in space and the magnitude of
the error is directly proportional th2, whereM is the Mach
number M =u/cg and c, is the sound speedciz 1/3 for
D2Q9. The rotation of the geometrical domain reduces the
accuracy of the LBM. Note that we have not taken into ac-
count any driving force for the Poiseuille flow. However, this
does not alter the fact that the solution of the flow is now
lattice space dependent. Obviously, the introduction of a
body force must not influence the density of the flow field.
One can also obtain the same result by rotating the lattice by
— /4 for the original horizontal Poiseuille problefRig. 1,
bottom righ.

To investigate the effect of rotation on the velocity field, a
body force is introduced to the calculation which transfers
the same momentum to the fluid as the pressure gradient:

(7p_(9p_

X ay =G=— \/Epvuo. (11

The implementation of the body force in the LBM is some-
what arbitrary(see for a review, Ref10]). However, to keep
the analysis as near as possible to that given in [®éfthe
body force

Wi
— 0G .8, (12

S

appears as an additional term on the right-hand &rtgS)
of Eq. (1).

The velocity error for the horizontal Poiseuille profile
with a — 77/4 rotation of the latticésee Fig. 1, bottom right
is given by

ux,errzoa uy,err:u(%yb\?’- (13

The accuracy of the velocity is reduced to third order in
space.

The error coefficienE changes with the angle of the ro-
tation as follows:

E=—coS(a)+cod(a), (14)

where « is the rotation angldi.e., it has a maximum at
— /4, and it becomes zero at 0 andr/2).

Note that the error has a maximum when there is a paral-
lel lattice link (the cross diagonal of the latticevith the
orientation of the wall, and the error is zero only when the

Eq. (3) using the equilibrium functions above. If the macro- flow is parallel with the main linkgas was pointed out in
scopic quantities obtained are the analytical solutions at sitRef. [6]). In spite of the fact that the solution found is not
r, then these distribution functions will form exact represen-analytical in the LBM, one could use the error function ob-
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tained toa priori study boundary conditions in the very same the Poiseuille profile provides a specific analytical solution

way as it was done in Ref6]. Indeed, taking into account for this situation. Substituting the general solution to the

the effect of boundary conditions to the equilibrium distribu- equilibrium distributions and performing the analysis, one

tions, one could determine the accuracy change of the solean obtain some interesting results. The density is always

tion and consequently the accuracy of the boundary condianalytical, i.e., there is no compressibility error at all for this

tion itself. type of flows. The velocity error obtained for ttrecompo-
nent can be written as

Uxerr=— 1/6[2Ux(y) - 6Gx5/l)_ Uy )— Ux(y+)],

We also performed a similar analysis for the Jeffery- (16)
Hamel problem. This is a radial flow caused by a sink or Uy err=Gy/p.
source at the origin and bounded by solid wall9at = «.
Since this flow is a radial one, it could provide more infor-
mation about the accuracy of the LBM as the flow and lattic
directions are varied. For general cases, the solution of thi
problem is given by implicit elliptic integrals, but for creep-
ing flow one can obtain the following simple explicit form
[11]:

IV. THE JEFFERY-HAMEL PROBLEM

It is worth emphasizing that the same expressions for the
error can be derived for the seven velociti®2Q7) model.
o eliminate these errors, one has to selgcand a corre-
Sponding body force. Obviously, if there is ygacomponent
of the body force, i.e.G,=0 thenu, is also analytical. It is
straightforward to prove that a possible choice with first-
ordery is

g(r;)=1+%CS(?(a)[(Siﬂ(w/Z)—Zan)—1], (15) Ux=Uoy, Uy=0, Gx=Gy=0, (17)

which is the Couette flow. Actually, it has already been

where = 6/a andu, =g(7)Uyax Whereu,,, depends only ~Pointed out in another wal6] that this is also an analytical
on the radiug (the result is based on similarity solutions ~ solution of the LBM. A.second.—order solution can be givenin
Knowing the analytical solution, the analysis of the the form of the Poiseuille profile and the corresponding body

Jeffery-Hamel problem is straightforward. Carrying out theforce given by Eq(4). It is easy to show that a third-order
calculations, one can claim that the Jeffery-Hamel problem igolution also exists, which—as far as we know—has not

not an analytical solution of the LBM. Both the density and been known before:
velocity errors are func_tlon of several paramet&tsyy, a, p, U= Ug(1-y?)
andup, .. In spite of this fact, following observations can be X '

given, using, e.gx=1,y=0, a=/4, andp=1: In fact, one can point out that there are infinite number of
(1) The compress_lb_ll_lty error_|@(_|\/| ) ) analytical solutions for the LBM and incorporating HG6)
(2) The compressibility error is sixth order in space, but atyith ‘the corresponding Navier-Stokes equations, one can de-
a certain Mach number it starts to decrease. Keeping in ming, o 5 simple ordinary differential equation to obtain solu-

that this is a creeping flow and on increasings,, the so- ions that verify both the lattice Boltzmann and the Navier-
lution still remained second order for relatively large Mach gigkes equationfl2].

numbers.

(3) The convergence of the velocity is second order in
space(the rate of convergence was 2.8 the region where
the Mach number is small enough to give sixth order accu- A nice property of this analysis is that it can provide in-

uy=0, Gy=—-6pryuy. (18

VI. ON THE COMPRESSIBILITY ERROR

racy in space. formation about the compressibility error independently
(4) We observed similar behavior at other space positiongrom the discretization error. Indeed, using the same tech-
(x,y) although the rate of convergence changed a lillg.,  nique as before, one can derive the compressibility error for

atx=2, y=0.5 the rate of convergence decreased)to 2 a general problem wherg=u,(x,y) andu,=u(x,y). At a

All of these results suggest that there should be somgiven lattice site, the resulting error term is a function of the
general relation between the compressibility error and theelocities of the neighboring sites. One can take the Taylor
velocity field, and this relation can be simple enough for lowexpansion up to second-order of these velocities and using

orders in space. the fact that the velocity field should be divergence free for
incompressible flow, one can simplify the error term as fol-
V. ANALYTICAL SOLUTIONS FOR THE LATTICE lows:

BOLTZMANN METHOD
— 2
Using this technique, one can look for a general class of Perr =10

analytical solutions of the LBM. It is important to note that

some of these solutions can be analytical solutions of the The compressibility error is clearly second order and Eq.
Navier-Stokes equations, too. First, we limit the scope of(19) gives a quite simple relation between the velocity field
such analysis to 2D and more restrictively for solutions,and the compressibility error. Obviously, this error term dis-
which can be given as,=u,(y) andu,=0. Let us align the appears (just like higher-order termsfor unidirectional
lattice main diagonal parallel to the flow field. We know that flows, when the main diagonal is parallel with the flow field.

au,\?  duy, du
X) + L= (19

ox | ax ay
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One can also check that the second-order error(E3), will investigate the effect of boundary conditions on the accuracy.
be zero for the rotated flow fieldsee, e.g., Eq6)], too. The calculation introduced in this paper is straightforward
using modern symbolic manipulation tools. We gave a

VIl. CONCLUSION simple condition for a specific class of hydrodynamic prob-

. . lem, which—in different orders—resulted in, subsequently,
~ The accuracy of the LBM may change with the orienta-tne Couette, the Poiseuille flow, and in third-order a new
tion of the flow field and the lattice. It is worth emphasizing gccurate solution for the LBM. All of these solutions verify
Although the accuracy is changing with the lattice orienta-gych an analysis really exciting, especially since the analysis
tion for the Poiseuille problem, the worst case still givescgn pe extended easily for 3D.
third-order accuracy in space for the velocity, whereas the Fingjly, it was pointed out that the compressibility error is

multiscale expansion predicts only second-order accuracy fqp, 3 strong relation with the velocity field. More details about
the LBM. Dewgmons from incompressible behavior are alsoe nature of this error will be presented in the near future.
known asO(M*<) [13], which is also in line with the results

obtained heré¢see Eq.(10)].

Our analysis proved that the Jeffery-Hamel flow is not an
analytical solution of the LBM, however its analysis pro- The author would like to thank Dr. Luis Valino for his
vided interesting observations about the accuracy of th&ospitality during the preparation of this publication. This
LBM. We have already called the reader attention to the factvork was supported by the Research Training Network
that in spite of the lack of analytical solution, one can use th&sTOPP in the 5th Framework program of the European
accuracy information obtained from analytical tesatpriori Union under Grant No. HPRN-CT-1999-00041.
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