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Accuracy of the lattice Boltzmann method based on analytical solutions

Gábor Házi*
LITEC, Consejo Superior de Investigacion Cientificas, Maria de Luna 8, Zaragoza 50015, Spain

~Received 31 December 2002; published 15 May 2003!

In this paper, a simple method is proposed to obtain steady analytical solutions for the lattice Boltzmann
method. Based on such analytical results, it is demonstrated how the accuracy of the lattice Boltzmann method
can depend on the relative orientation of the lattice and the flow field. It is also demonstrated that the method
can be useful to obtain a general class of analytical solutions for the lattice Boltzmann method. Finally, a
simple relation is given between the compressibility error and the velocity field.
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I. INTRODUCTION

Over the last few years, the lattice Boltzmann meth
~LBM ! became a viable and useful method in the field
computational fluid dynamics. Due to some of its nice pro
erties such as easy implementation and parallelization, it
been applied successfully in a wide range of hydrodyna
problems~for a review, see Refs.@1,2#!. However, the accu-
racy of the LBM is still subject to debate. Using multisca
expansion, it has been shown that at low Mach numbers,
LBM solves the Navier-Stokes equations with second-or
accuracy both in space and time@3#. Nevertheless, severa
numerical experiments have shown only first-order accur
~see Ref.@4#, and references therein!. Now, it is generally
accepted that the boundary conditions adopted from the
tice gas automaton method~e.g., bounce-back method fo
nonslip velocity! can reduce the accuracy of the LBM. Fu
thermore, this conclusion has been supported by analy
calculations. Indeed, when Nobleet al. developed a new
nonslip boundary condition for the LBM, they found th
when using this boundary condition at the walls of a ho
zontal channel, the steady-state solution gave the Poise
profile up to the machine accuracy@5#. This observation sug
gested that a set of distribution functions has to exist, wh
is the exact representation of the Poiseulle flow~independent
of the lattice spacing!. Zhouet al. determined these distribu
tion functions analytically, using the special properties of
horizontal Poiseuille flow@6#. They assumed, for instance
that the solution is symmetric, and independent of time a
x. Based on this analytical solution, they also demonstra
that the bounce-back boundary condition can reduce the
curacy of the LBM to first order. However, the investigatio
focused only on the case where the lattice orientation
parallel to the walls of the channel~see Fig. 1, top left!.
Consequently, the analytical solutions obtained in this w
could not answer the question how the bounce-back bou
ary condition performs in general, e.g., for inclined walls.
obtain a priori information about boundary conditions fo
such situations, one has to carry out the derivation of a
lytical solutions~if they exist at all! for curved walls. Unfor-
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tunately, there are only a few known analytical solutions
the Navier-Stokes equations where the geometrical doma
bounded by curved walls. Since for the horizontal Poiseu
flow we have an exact solution, it seems natural to look
an analytical solution for its rotated version; that is, rotati
the geometrical domain on the lattice or, equivalently, rot
ing the lattice on the geometrical domain, one can look
analytical solutions for the inclined Poiseuille flow~see Fig.
1, right!. Since for the rotated channel one of the propert
used in Ref.@6# will be destroyed, namely, thex indepen-
dence, one could not follow the steps given in Ref.@6#.

The aims of this paper are threefold. First, using a sim
idea it will be shown, how one can test whether an analyti
steady-state solution of the Navier-Stokes equations can
obtained exactly~up to machine accuracy! in the framework
of the LBM.

Second, using this idea the analytical solution of the
tated Poiseuille problem will be tested and will show ho
the accuracy of the LBM depends on the orientation of
lattice to the flow field for this specific case. We also analy
the accuracy of the analytical solution of a more comp

,
y;

FIG. 1. Flow directions in horizontal and inclined channe
(2p/4). This inclined channel corresponds to the horizontal fl
in a rotated lattice.
©2003 The American Physical Society05-1
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problem, namely, the Jeffery-Hamel flow, which has a clo
relationship with the Poiseuille problem.

Finally, we will give some preliminary results of an anal
sis, which focuses on the general class of analytical solut
of the LBM. It will be shown that for a specific class o
problems@when ux5ux(y) and uy50], a simple condition
can be obtained. It will be pointed out that for satisfying th
condition the first-order solution iny gives the Couette flow
the second-order provides the Poiseulle flow, and we giv
different analytical third-order solution, too. We point o
that this class of flows is always free of compressibility err
For a more general class@when ux5ux(x,y) and uy
5uy(x,y)], a relation between the compressibility error a
the velocity field is given.

II. THE LATTICE BOLTZMANN METHOD

In this paper, one of the most popular two-dimensio
LBM models is used: D2Q9, which uses nine-velocities,
the idea to test analytical solutions can be immediately
plicable to any other lattice@even for three-dimensional~3D!
lattices#.

The lattice Boltzmann equation using the Bhatnag
Gross-Krook@7,8# collision operator is given by

f i~r1dei ,t1d!2 f i~r ,t !52
1

t
@ f i~r ,t !2 f i

eq~r ,t !#, ~1!

where f i(r ,t) is the particle distribution function,ei is the
lattice velocity vector,t is the relaxation time that control
the rate of approach to the equilibrium distribution functi
f i

eq(r ,t), andd is the lattice spacing.
For a D2Q9 model, the lattice vectors~see Fig. 1, bottom

left! take the formei5@cos„p( i 21)/2…,sin„p( i 21)/2…# for
i 51,2,3,4 and ei5A2@cos„p( i 29/2)/2…,sin„p( i 29/2)/2…#
for i 55,6,7,8, and the equilibrium distributions can be giv
by

f 0
eq5w0rS 12

3

2
u•uD ,

~2!

f i
eq5wirF113~ei•u!1

9

2
~ei•u!22

3

2
u•uG ,

where the lattice weights arew05 4
9 , wi5

1
9 for i 51,2,3,4

andwi5
1

36 for i 55,6,7,8.
The equilibrium distributions are derived by the low

Mach number approximation of the Maxwell-Boltzmann d
tribution. A systematic and mathematically rigorous deriv
tion of the coefficients can be found in Ref.@9#.

The macroscopic quantities; hydrodynamic velocity a
density are calculated by taking the following moments
the distribution functions:

r5(
i

f i , ru5(
i

f iei . ~3!

By using the Chapman-Enskog multiscale expansion
can be shown that the density and the velocities satisfy
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Navier-Stokes equations in the low-Mach number limit~see
the derivation, e.g., in Ref.@3#!.

III. THE ROTATED POISEUILLE FLOW

Using the same model, Zouet al. @6# determined the form
of the distribution functions that exactly satisfy the Poiseu
flow in a horizontal channel with unit width:

ux5u0~12y2!, uy50,
]p

]x
522rnu0 ,

]p

]y
50.

~4!

Their derivation was based on the special properties of
flow field ~e.g., independency oft andx) and their results are
valid in the overall parameter domain oft, d, u0.

However, there is a more straightforward way to test a
lytical solutions in the LBM framework by choosingt51.
Although this selection strictly limits the validation of an
analytical solution, we can use this idea for more gene
problems where the flow field does not have such nice pr
erties as those of the Poiseuille flow.

Indeed, choosingt51, the distribution functions at a
given lattice siter and timet1d will be determined by the
equilibrium distributions of the neighboring sites based
the analytical solutions,

f i~r1dei ,t1d!5 f i
eq~r ,t !. ~5!

If the solution is steady, we should obtain the analytical
lution at r by simply taking the corresponding moments
the distribution functions using Eq.~3!. In other words, if
one sums up the equilibrium distribution functions of t
neighboring lattice sites ofr ~which correspond to an ana
lytical solution! and adds the rest distribution ofr to this
sum, the result should be the analytical density atr . For the
horizontal Poiseuille flow, it is easy to check that the abo
leads to the same distribution functions that were obtaine
Ref. @6#. ~a substitution oft51 is understood for a direc
comparison!. Actually, the idea can be applied to test a
steady state solution of the Navier-Stokes equation in
LBM framework, but an existing analytical solution woul
be validated in this way only fort51 or, from another point
of view, for a fixed viscosity.

Using the idea above, one can derive analytical solut
for the Poiseuille flow in an inclined channel. For simplicit
we first consider the problem where the angle of the chan
is 2p/4 ~see Fig. 1, top right!. A transformation of the ana
lytical solution of the horizontal Poiseuille flow gives

ux~x,y!5uy~x,y!5
A2

2
u0S 12

A2

2
~y2x!2D . ~6!

Looking for the solution atr5(x,y) and substituting the
analytical solutions into the equilibrium distributions at th
neighboring sites, one obtains the following functions:

f 0
eq~x,y!5

4r

9 H 12
3

2
@ux

2~x,y!1uy
2~x,y!#J ,
5-2
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f 1
eq~x2,y!5

r

9
@113ux~x2,y!13ux

2~x2,y!#,

f 2
eq~x,y2!5

r

9
@113uy~x,y2!13uy

2~x,y2!#, ~7!

f 3
eq~x1,y!5

r

9
@123ux~x1,y!13uy

2~x1,y!#,

f 4
eq~x,y1!5

r

9
@123uy~x,y1!13uy

2~x,y1!#,

f 5
eq~x2,y2!5

r

36H 113@ux~x2,y2!1uy~x2,y2!#

1
9

2
@ux~x2,y2!1uy~x2,y2!#2

2
3

2
@ux

2~x2,y2!1uy
2~x2,y2!#J ,

f 6
eq~x2,y1!5

r

36H 113@2ux~x2,y1!1uy~x2,y1!#

1
9

2
@2ux~x2,y1!1uy~x2,y1!#2

2
3

2
@ux

2~x2,y1!1uy
2~x2,y1!#J ,

f 7
eq~x1,y1!5

r

36H 113@2ux~x1,y1!1uy~x1,y1!#

1
9

2
@2ux~x1,y1!2uy~x1,y1!#2

2
3

2
@ux

2~x1,y1!1uy
2~x1,y1!#J ,

f 8
eq~x1,y2!5

r

36H 113@ux~x1,y2!2uy~x1,y2!#

1
9

2
@ux~x1,y2!2uy~x1,y2!#2

2
3

2
@ux

2~x1,y2!1uy
2~x1,y2!#J , ~8!

where for conciseness, the superscript1 and 2 have been
introduced for displacements, e.g.,

f 7
eq~x1,y1![ f 7

eq~x1d,y1d!. ~9!

These functions will form the distributions atr and time
t1d. The macroscopic quantities atr can be obtained from
Eq. ~3! using the equilibrium functions above. If the macr
scopic quantities obtained are the analytical solutions at
r , then these distribution functions will form exact represe
05670
te
-

tations of the inclined Poiseuille flow atr . Summing up the
distribution functions above, one obtains the following de
sity:

r~12Eu0
2d4!, ~10!

whereE51/4.
This result clearly demonstrates that the distribution fu

tions obtained do not satisfy the analytical solution since
density now depends on the lattice spaced. The error in the
density is of the fourth order in space and the magnitude
the error is directly proportional toM2, whereM is the Mach
number M5u/cs and cs is the sound speed (cs

251/3 for
D2Q9!. The rotation of the geometrical domain reduces
accuracy of the LBM. Note that we have not taken into a
count any driving force for the Poiseuille flow. However, th
does not alter the fact that the solution of the flow is no
lattice space dependent. Obviously, the introduction o
body force must not influence the density of the flow fie
One can also obtain the same result by rotating the lattice
2p/4 for the original horizontal Poiseuille problem~Fig. 1,
bottom right!.

To investigate the effect of rotation on the velocity field,
body force is introduced to the calculation which transfe
the same momentum to the fluid as the pressure gradien

]p

]x
5

]p

]y
5G52A2rnu0 . ~11!

The implementation of the body force in the LBM is som
what arbitrary~see for a review, Ref.@10#!. However, to keep
the analysis as near as possible to that given in Ref.@6#, the
body force

wi

cs
2

dGaeia ~12!

appears as an additional term on the right-hand side~RHS!
of Eq. ~1!.

The velocity error for the horizontal Poiseuille profi
with a 2p/4 rotation of the lattice~see Fig. 1, bottom right!
is given by

ux,err50, uy,err5u0
2yd3. ~13!

The accuracy of the velocity is reduced to third order
space.

The error coefficientE changes with the angle of the ro
tation as follows:

E52cos2~a!1cos4~a!, ~14!

where a is the rotation angle~i.e., it has a maximum at
2p/4, and it becomes zero at 0 and2p/2).

Note that the error has a maximum when there is a pa
lel lattice link ~the cross diagonal of the lattice! with the
orientation of the wall, and the error is zero only when t
flow is parallel with the main links~as was pointed out in
Ref. @6#!. In spite of the fact that the solution found is n
analytical in the LBM, one could use the error function o
5-3
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GÁBOR HÁZI PHYSICAL REVIEW E 67, 056705 ~2003!
tained toa priori study boundary conditions in the very sam
way as it was done in Ref.@6#. Indeed, taking into accoun
the effect of boundary conditions to the equilibrium distrib
tions, one could determine the accuracy change of the s
tion and consequently the accuracy of the boundary co
tion itself.

IV. THE JEFFERY-HAMEL PROBLEM

We also performed a similar analysis for the Jeffe
Hamel problem. This is a radial flow caused by a sink
source at the origin and bounded by solid walls atu56a.
Since this flow is a radial one, it could provide more info
mation about the accuracy of the LBM as the flow and latt
directions are varied. For general cases, the solution of
problem is given by implicit elliptic integrals, but for creep
ing flow one can obtain the following simple explicit form
@11#:

g~h!511
1

2
csc2~a!@~sin~p/2!22ah!21#, ~15!

whereh5u/a andur5g(h)umax whereumax depends only
on the radiusr ~the result is based on similarity solutions!.

Knowing the analytical solution, the analysis of th
Jeffery-Hamel problem is straightforward. Carrying out t
calculations, one can claim that the Jeffery-Hamel problem
not an analytical solution of the LBM. Both the density a
velocity errors are function of several parameters:x, y, a, r,
andumax. In spite of this fact, following observations can b
given, using, e.g.,x51, y50, a5p/4, andr51:

~1! The compressibility error isO(M2).
~2! The compressibility error is sixth order in space, but

a certain Mach number it starts to decrease. Keeping in m
that this is a creeping flow and on increasingumax, the so-
lution still remained second order for relatively large Ma
numbers.

~3! The convergence of the velocity is second order
space~the rate of convergence was 2.3!, in the region where
the Mach number is small enough to give sixth order ac
racy in space.

~4! We observed similar behavior at other space positi
(x,y) although the rate of convergence changed a little~e.g.,
at x52, y50.5 the rate of convergence decreased to 2!.

All of these results suggest that there should be so
general relation between the compressibility error and
velocity field, and this relation can be simple enough for lo
orders in space.

V. ANALYTICAL SOLUTIONS FOR THE LATTICE
BOLTZMANN METHOD

Using this technique, one can look for a general class
analytical solutions of the LBM. It is important to note th
some of these solutions can be analytical solutions of
Navier-Stokes equations, too. First, we limit the scope
such analysis to 2D and more restrictively for solution
which can be given asux5ux(y) anduy50. Let us align the
lattice main diagonal parallel to the flow field. We know th
05670
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the Poiseuille profile provides a specific analytical soluti
for this situation. Substituting the general solution to t
equilibrium distributions and performing the analysis, o
can obtain some interesting results. The density is alw
analytical, i.e., there is no compressibility error at all for th
type of flows. The velocity error obtained for thex compo-
nent can be written as

ux,err521/6@2ux~y!26Gxd/r2ux~y2!2ux~y1!#,
~16!

uy,err5Gy /r.

It is worth emphasizing that the same expressions for
error can be derived for the seven velocities~D2Q7! model.
To eliminate these errors, one has to selectux and a corre-
sponding body force. Obviously, if there is noy component
of the body force, i.e.,Gy50 thenuy is also analytical. It is
straightforward to prove that a possible choice with fir
ordery is

ux5u0y, uy50, Gx5Gy50, ~17!

which is the Couette flow. Actually, it has already be
pointed out in another way@6# that this is also an analytica
solution of the LBM. A second-order solution can be given
the form of the Poiseuille profile and the corresponding bo
force given by Eq.~4!. It is easy to show that a third-orde
solution also exists, which—as far as we know—has
been known before:

ux5u0~12y3!, uy50, Gx526rnyu0 . ~18!

In fact, one can point out that there are infinite number
analytical solutions for the LBM and incorporating Eq.~16!
with the corresponding Navier-Stokes equations, one can
rive a simple ordinary differential equation to obtain sol
tions that verify both the lattice Boltzmann and the Navie
Stokes equations@12#.

VI. ON THE COMPRESSIBILITY ERROR

A nice property of this analysis is that it can provide i
formation about the compressibility error independen
from the discretization error. Indeed, using the same te
nique as before, one can derive the compressibility error
a general problem whereux[ux(x,y) anduy[uy(x,y). At a
given lattice site, the resulting error term is a function of t
velocities of the neighboring sites. One can take the Tay
expansion up to second-order of these velocities and u
the fact that the velocity field should be divergence free
incompressible flow, one can simplify the error term as f
lows:

rerr5d2F S ]ux

]x D 2

1
]uy

]x

]ux

]y G . ~19!

The compressibility error is clearly second order and E
~19! gives a quite simple relation between the velocity fie
and the compressibility error. Obviously, this error term d
appears ~just like higher-order terms! for unidirectional
flows, when the main diagonal is parallel with the flow fiel
5-4
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One can also check that the second-order error, Eq.~19!, will
be zero for the rotated flow field@see, e.g., Eq.~6!#, too.

VII. CONCLUSION

The accuracy of the LBM may change with the orien
tion of the flow field and the lattice. It is worth emphasizin
that the results here do not contradict earlier observatio
Although the accuracy is changing with the lattice orien
tion for the Poiseuille problem, the worst case still giv
third-order accuracy in space for the velocity, whereas
multiscale expansion predicts only second-order accuracy
the LBM. Deviations from incompressible behavior are a
known asO(M2) @13#, which is also in line with the results
obtained here@see Eq.~10!#.

Our analysis proved that the Jeffery-Hamel flow is not
analytical solution of the LBM, however its analysis pr
vided interesting observations about the accuracy of
LBM. We have already called the reader attention to the f
that in spite of the lack of analytical solution, one can use
accuracy information obtained from analytical test toa priori
y

no
,

n

id
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investigate the effect of boundary conditions on the accura
The calculation introduced in this paper is straightforwa

using modern symbolic manipulation tools. We gave
simple condition for a specific class of hydrodynamic pro
lem, which—in different orders—resulted in, subsequen
the Couette, the Poiseuille flow, and in third-order a n
accurate solution for the LBM. All of these solutions veri
the 2D Navier-Stokes equations, which, we believe, ma
such an analysis really exciting, especially since the anal
can be extended easily for 3D.

Finally, it was pointed out that the compressibility error
in a strong relation with the velocity field. More details abo
the nature of this error will be presented in the near futu
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